The Case of Alzheimer’s Disease
Allan B. Haberman, Ph.D.

In recent years, many experts in the pharmaceutical industry, the FDA, and the National Institutes of Health (NIH) have identified the need for improved animal models as a critical bottleneck in drug discovery and development. The FDA white paper Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products (March 2004, www.fda.gov/oc/initiatives/criticalpath/whitewrap.html) cites the poorly understood clinical relevance and limited predictive value of many animal models, which hinder effective drug discovery and development.

In our report, Model Animal Systems: Animal models remain an important component in the development of therapeutic strategies for neurodegenerative diseases, such as Alzheimer’s disease.

Emerging Applications and Commercial Opportunities in Drug Discovery and Development (Cambridge Healthtech Advisors, June 2004), we review recent progress in the application of model organisms to drug discovery and development. This includes case studies on the development and use of disease-specific animal models to develop novel therapeutic strategies. These case studies include applications of animal models to diseases of aging, neurodegenerative diseases, cancer, and cardiovascular diseases.

Animal models have been and continue to be important in developing therapeutic strategies for neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Much about the pathogenesis of these diseases remains unknown. However, a common feature of disease pathways in these diseases is the role of abnormal, toxic proteins (Table). These proteins aggregate and are deposited in extracellular plaques or intracellular inclusions that are characteristic of each of these diseases.

Researchers’ knowledge of these disease pathways has been gained by a combination of pathologic studies in postmortem human tissue, human genetics, and studies in animal models. In AD, patients typically exhibit two types of brain lesions: extracellular “senile plaques” made up of aggregated beta-amyloid (Aβ) peptides, and intracellular “neuritic tangles,” made up largely of the cytoskeletal protein tau.

By studying rare familial cases of early-onset AD, human genetics studies have identified three disease genes in these conditions—genes for amyloid precursor protein (APP), and for two presenilins, P51 and P52. The presenilins are transmembrane proteins that are involved in the cleavage of APP to produce Aβ. With wild-type presenilins and wild-type APP, Aβ is cleaved so as to give predominantly the 42-amino-acid form of Aβ, with a small amount of a 40-amino-acid form. However, mutant forms of any of the three genes results in formation of greater amounts of the 42-amino-acid form of Aβ (Aβ42), which more readily aggregates and forms amyloid plaques.

Amyloid Hypothesis
Because of these findings, most AD researchers have focused on the APP processing pathway or on aggregation of Aβ as intervention points for therapeutic strategies. The hypothesis that this is the central AD disease pathway is called the “amyloid hypothesis.” Nevertheless, although specific mutations in amyloid pathway genes appear to explain the formation of senile plaques, amyloid hypothesis mutation, it is not known how dysfunction in the amyloid pathway occurs in the more common, late-onset sporadic form of AD.

Several researchers have constructed transgenic mouse strains that express mutant forms of human Ab. For example, researchers at Elan (Dublin) developed a transgenic mouse model, called the PDAPP mouse, which overexpresses the V717F (valine at residue 717 substituted by phenylalanine) mutant form of human APP. This mouse model develops amyloid plaques resembling those seen in AD, and in particular, an age-dependent and brain-region dependent form of AD. In 1999, Elan researchers published a study showing that immunization of the mice with Ab42 ameliorates plaque formation and other neuropsychological changes.1 This led to Elan’s current collaboration with Wyeth (Madison, NJ) to develop immunotherapies for AD.

Elan and its collaborators also determined that the enzymes beta-secretase and gamma-secretase are involved in the APP processing pathway.2,3 The gamma-secretase study involved using the PDAPP model. The researchers administered an inhibitor of gamma-secretase orally to the mice, and observed a reduction in the levels of Aβ in the brain in a dose-dependent manner. Beta- and gamma-secretase are targets for drug discovery in Alzheimer’s disease at Elan and several other companies (e.g., Bristol-Myers Squibb, GlaxoSmithKline).

Researchers have also been using the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio to study disease pathways in AD. Disease models based on these organisms allow researchers to apply powerful genetic methods that are not possible in mammalian systems to the study of disease pathways, and to target identification and validation. They allow for high-throughput screening of drugs in vivo. However, targets identified and/or validated in these systems, as well as compounds that regulate them, must be confirmed in mammalian models, which are also necessary for preclinical studies.

Presenilin Homologues
Presenilin homologues are found in C. elegans, Drosophila, zebrafish, and mammals. These proteins function in the Notch pathway. In this pathway, presenilins are involved in proteolytic cleavage of the Notch intracellular domain, and the resulting proteolytic fragment can enter the nucleus and carry out signaling. The Notch pathway is involved in various developmental processes in C. elegans, Drosophila, zebrafish, and in mammals. For example, in adult mammals this pathway is involved in hematopoiesis, immune cell differentiation, and numerous other processes involving self-renewal of cells and tissues from stem or progenitor cells.

In mammals, presenilins are involved in pathways for proteolytic processing of intracellular proteins of both Notch and of APP.

Gamma-Secretase
In recent years, researchers at Ellexis, Schering-Plough Research Institute, and several universities, the C. elegans, Drosophila, zebrafish, and murine Notch pathways systems, have focused on studies that resulted in the identification of the components of gamma-secretase.

In Drosophila and in mammals, gamma secretase is a membrane protein complex that contains three other neurotrophic components in addition to presenilins. Presenilins underlying endoproteolysis to yield an N-terminal and a C-terminal fragment; these associate with the other components of gamma-secretase.

Drosophila or zebrafish presenilins can substitute for their human homologues in transgenic human cells—they undergo proper endoproteolytic processing and yield gamma-secretase activity.4,5 Another study showed that treatment of zebrafish with gamma-secretase inhibitors affected embryonic development in similar ways to mutants in Notch pathway genes. This suggests that at least some gamma-secretase inhibitors may inhibit essential Notch pathways in development.

Such compounds would not be good drug candidates. However, one research group used the zebrafish model to identify small-molecule drugs that inhibit gamma-secretase—mediated production of Aβ but not its activity in the Notch pathway. In contrast, a beta-secretase knockout mouse constructed by researchers at Elan, Pharmacia (now Pfizer), and Armitage (now Exelixis Deutschland) displayed an apparently healthy phenotype. Brains and cultured cortical cells from these knockout mice produced much less Aβ from APP. These studies suggest that beta-secretase may be a better drug target than gamma-secretase.

Although most studies of AD focus on the amyloid hypothesis, some researchers believe that the hypothesis may not fully explain the pathogenesis of the disease, and that animal models based on the amyloid hypothesis may not adequately model AD.6 The extent to which an animal model models a human disease is a general and important issue.

Lewy Bodies
In addition to the Aβ containing “senile plaques” and tau-containing neurofibrillary tangles seen in AD brain, in most cases Lewy bodies containing α-synuclein are also seen. (As shown in the Table, Lewy bodies are characteristic of PD.) Also characteristic of AD are cholinergic neuron, synaptic loss, and inflammation.

Mouse models of AD that overexpress mutant human APP develop Aβ-containing plaques, and also exhibit tau and α-synuclein inclusions. However, they do not exhibit neurofibrillary tangles or Lewy bodies, or neurodegeneration or deficits in cholinergic function.

Some researchers therefore hypothesize that these mice model only the early stages of AD pathology, that the formation of Aβ plaques alone may not cause neurodegeneration without the formation of tau and/or α-synuclein inclusions.

Several research groups have constructed mouse models in which both amyloid plaques and other types of inclusions seen in human AD. One such model is transgenic for both human Aβ and human α-synuclein.7 These mice exhibit severe deficits in

See Model Systems on page 31
learning and memory, and age-dependent degeneration of cholinergic neurons. They also had more α-synuclein-containing neuronal inclusions than mice transgenic for α-synuclein alone. A second mouse model was doubly transgenic for human APP and human mutant tau.

Singly tau transgenic mice developed a progressive motor disturbance. Mice doubly transgenic for APP and mutant tau demonstrated greater numbers of tau-containing neurofibrillary tangles than singly mutant tau-transgenic mice. They also demonstrated neurodegeneration and age-dependent motor disturbance.

Mouse models that more closely resemble the pathology of human AD may enable researchers to better understand the full spectrum of pathogenic pathways in AD. They may also enable them to develop drugs that can treat AD in its various stages.

The above studies illustrate two important strategies that researchers have been applying to various diseases: utilizing invertebrate and zebrafish models that allow the use of powerful genetic and high-throughput screening methods, and developing mammalian models that more closely mimic human disease. These strategies are expected to enable researchers to gain a greater understanding of disease pathways and develop new approaches to drug discovery.

Allan B. Haberman, Ph.D., is principal of Haberman Associates (Wayland, MA), a biotechnology and pharmaceutical consulting firm. E-mail: allanhab@biopharmconsortium.com.

This article is based on Model Animal Systems: Emerging Applications and Commercial Opportunities in Drug Discovery and Development, a report published by Cambridge Healthtech Advisors. Phone: (781) 547-0202.

References

SNP Genotyping—Fast and Easy

No capital equipment required!

SNP screening kits
- Cystic Fibrosis
- p53

Cancer related SNPs (500)
- 200 cytokine SNPs
- 150 transcription factor-related SNPs
- 150 cell growth-related SNPs

Disease related
- Cystic Fibrosis
- p53
- Factor II
- Factor V
- MTHFR
- Drug Resistant Hepatitis B Virus
- β-thalassemia

Custom service
- Assay Development
- Mutation Screening

Panomics’ SNPCapture genotyping kits employ a robust technology, a high-throughput ELISA platform. Everything you need is included—no additional expensive equipment is required.

We also develop custom SNP assays and screening kits, as well as perform screening in house saving you the effort.

toll free: 1.877.726.6642 direct: 1.650.216.9736 email: reply@panomics.com www.panomics.com